569 research outputs found

    Vibrational Density Matrix Renormalization Group

    Full text link
    Variational approaches for the calculation of vibrational wave functions and energies are a natural route to obtain highly accurate results with controllable errors. However, the unfavorable scaling and the resulting high computational cost of standard variational approaches limit their application to small molecules with only few vibrational modes. Here, we demonstrate how the density matrix renormalization group (DMRG) can be exploited to optimize vibrational wave functions (vDMRG) expressed as matrix product states. We study the convergence of these calculations with respect to the size of the local basis of each mode, the number of renormalized block states, and the number of DMRG sweeps required. We demonstrate the high accuracy achieved by vDMRG for small molecules that were intensively studied in the literature. We then proceed to show that the complete fingerprint region of the sarcosyn-glycin dipeptide can be calculated with vDMRG.Comment: 21 pages, 5 figures, 4 table

    Finite-size version of the excitonic instability in graphene quantum dots

    Full text link
    By a combination of Hartree-Fock simulations, exact diagonalization, and perturbative calculations, we investigate the ground-state properties of disorder-free circular quantum dots formed in a graphene monolayer. Taking the reference chemical potential at the Dirac point, we study N \leq 15 interacting particles, where the fine structure constant {\alpha} parametrizes the Coulomb interaction. We explore three different theoretical concepts: (i) Sucher's positive projection ("no-pair") approach, (ii) a more general Hamiltonian conserving both N and the number of additional electron-hole pairs, and (iii) the full quantum electrodynamics (QED) problem, where only N is conserved. We find that electron-hole pair production is important for {\alpha} 1. This corresponds to a reconstruction of the filled Dirac sea and is a finite-size version of the bulk excitonic instability. We also address the effects of an orbital magnetic field.Comment: 9 pages, 10 figures, to appear in PR

    Explicitly correlated Gaussian functions with shifted-center and projection techniques in pre-Born-Oppenheimer calculations

    Full text link
    Numerical projection methods are elaborated for the calculation of eigenstates of the non-relativistic many-particle Coulomb Hamiltonian with selected rotational and parity quantum numbers employing shifted explicitly correlated Gaussian functions, which are, in general, not eigenfunctions of the total angular momentum and parity operators. The increased computational cost of numerically projecting the basis functions onto the irreducible representations of the three dimensional rotation-inversion group is the price to pay for the increased flexibility of the basis functions. This increased flexibility allowed us to achieve a substantial improvement for the variational upper bound to the Pauli-allowed ground-state energy of the H3+={_3^+=\{p+,^+,p+,^+,p+,^+,e,^-,e}^-\} molecular ion treated as an explicit five-particle system. We compare our pre-Born-Oppenheimer result for this molecular ion with rovibrational results including non-adiabatic corrections.Comment: 29 pages, 3 figures, 4 table

    Complete-Graph Tensor Network States: A New Fermionic Wave Function Ansatz for Molecules

    Get PDF
    We present a new class of tensor network states that are specifically designed to capture the electron correlation of a molecule of arbitrary structure. In this ansatz, the electronic wave function is represented by a Complete-Graph Tensor Network (CGTN) ansatz which implements an efficient reduction of the number of variational parameters by breaking down the complexity of the high-dimensional coefficient tensor of a full-configuration-interaction (FCI) wave function. We demonstrate that CGTN states approximate ground states of molecules accurately by comparison of the CGTN and FCI expansion coefficients. The CGTN parametrization is not biased towards any reference configuration in contrast to many standard quantum chemical methods. This feature allows one to obtain accurate relative energies between CGTN states which is central to molecular physics and chemistry. We discuss the implications for quantum chemistry and focus on the spin-state problem. Our CGTN approach is applied to the energy splitting of states of different spin for methylene and the strongly correlated ozone molecule at a transition state structure. The parameters of the tensor network ansatz are variationally optimized by means of a parallel-tempering Monte Carlo algorithm

    Accurate ab initio spin densities

    Get PDF
    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insights into chemically interesting features of the molecule under study such as the distribution of α\alpha- and β\beta-electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput. 2011, 7, 2740].Comment: 37 pages, 13 figure

    Block-Diagonalization of Operators with Gaps, with Applications to Dirac Operators

    Full text link
    We present new results on the block-diagonalization of Dirac operators on three-dimensional Euclidean space with unbounded potentials. Classes of admissible potentials include electromagnetic potentials with strong Coulomb singularities and more general matrix-valued potentials, even non-self-adjoint ones. For the Coulomb potential, we achieve an exact diagonalization up to nuclear charge Z=124 and prove the convergence of the Douglas-Kroll-He\ss\ approximation up to Z=62, thus improving the upper bounds Z=93 and Z=51, respectively, by H.\ Siedentop and E.\ Stockmeyer considerably. These results follow from abstract theorems on perturbations of spectral subspaces of operators with gaps, which are based on a method of H.\ Langer and C.\ Tretter and are also of independent interest

    Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields

    Full text link
    We show how to approximate Dirac dynamics for electronic initial states by semi- and non-relativistic dynamics. To leading order, these are generated by the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is related to m2+ξ2\sqrt{m^2 + \xi^2} and ξ2/2m\xi^2 / 2m, respectively. Higher-order corrections can in principle be computed to any order in the small parameter v/c which is the ratio of typical speeds to the speed of light. Our results imply the dynamics for electronic and positronic states decouple to any order in v/c << 1. To decide whether to get semi- or non-relativistic effective dynamics, one needs to choose a scaling for the kinetic momentum operator. Then the effective dynamics are derived using space-adiabatic perturbation theory by Panati et. al with the novel input of a magnetic pseudodifferential calculus adapted to either the semi- or non-relativistic scaling.Comment: 42 page

    Reliable estimation of prediction uncertainty for physico-chemical property models

    Full text link
    The predictions of parameteric property models and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method akin to Bayesian inference that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the 57Fe Moessbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with twelve density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm/s and 0.04-0.05 mm/s, respectively, the latter being close to the average experimental uncertainty of 0.02 mm/s. Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the coefficient of correlation, r2, or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical Moessbauer spectroscopy, which is of general applicability for physico-chemical property models and not restricted to isomer-shift predictions. We provide the statistically meaningful reference data set MIS39 and a new calibration of the isomer shift based on the PBE0 functional.Comment: 49 pages, 9 figures, 7 table
    corecore